\qquad

Reminder: Quiz tomorrow on proof, special kinds of angles, and the theorems of chapter 2

1. New Theorems. Read Theorems 2-7 and 2-8 on page 61 in the accent of your choice. Then, as a group, orally do problems p.62: C1,5,6.
2. Proof of Theorem 2-7 for the case where two angles are supplements of the same angle.

Given:

$\angle 1$ and $\angle 5$ are supplementary; $\angle 3$ and $\angle 5$ are supplementary.

Prove: $\angle 1 \cong \angle 3$

Statement	Reason
1.	1. Given
2. $\mathrm{m} \angle 1+\mathrm{m} \angle 5=180^{\circ} ;$ $\mathrm{m} \angle 3+\mathrm{m} \angle 5=180^{\circ}$.	2.
3.	3. Substitution POE
4.	4. Reflexive POE
5. $m \angle 1=m \angle 3$,	5.
or $\angle 1 \cong \angle 3$	

3. Locus. Recall that a parabola is the locus of points equidistant from a point and a line.

d
a. Add pertinent symbols to the diagram to indicate that points B and C are in the locus of points equidistant from point F and line d.
b. Find 2 more points in the locus, plot and label them.
4. Planning a Proof Hopefully you have begun to notice the general structure of a proof:

- The "Given"
- A diagram that illustrates given information
- The statement of what is to be proved
- A series of statements and reasons that lead sequentially from what is given to what is to be proved.

5. Write the proof stated below. Use the template shown.

Given: $\overline{A C} \perp \overline{B C} ; \angle 3$ is comp. to $\angle 1$

Prove: $\angle 3 \cong \angle 2$

Statement	Reason
1.	1. Given
2.	2.
3.	4.
4.	5.
5.	

6. Go back to the pink sheet, Construction 1, and write out the steps for constructions 1 and 2. Label points, so that your instructions refer to your diagram. Use the math open reference website or the text, pages $375-380$, as a resource.
7. Constructions. Given angles x and y. Construct angles having the given measures:

a. $x+y$

b. 180-2y
