Goal = generate a set of review questions with answers to help high school chemistry students prepare for a quiz on thermodynamics concepts

Prompting Attempt #1: *not scaffolded*; *"no-shot*" approach (i.e., examples not given)

Usefulness: <u>Not useful</u> for my introductory chemistry students– these are quantitative questions that are geared more towards an AP Physics class.

Prompting Attempt #2: scaffolded using *PROMPT* (Purpose, Role, Organize, Model, Parameters, Tweak); *"few-shot*" approach (several examples given as the model)

- 2. In an endothermic reaction, what happens to the system's heat?
 - a) It is absorbed from the surroundings.
 - b) It is released to the surroundings.c) It remains unchanged.
 - c) it remains unchanged.
 - d) It is converted to work.

Answers:

- c) Everything outside the system
 Explanation: The surroundings refer to everything external to the system being studied.
- 2. a) It is absorbed from the surroundings.

Explanation: In an endothermic reaction, the system absorbs heat from the surroundings.

Usefulness: <u>Definitely useful</u> for my introductory chemistry students– these questions are at the right level of difficulty, they are conceptual, and answers are provided with explanations. But before using this AI generated material, I need to go through the acronym *EDIT* (Evaluate, Determine, Identify, Transform) to guide me toward further improving the results and to help safeguard against potential bias, hallucinations, and misinformation. I start by evaluating the effectiveness of the language and structure of the output–all looks fine in this example. I then determine accuracy– as I gauge the correctness of the answers and explanations generated, I see that the explanations are superficial. Before re-prompting to address this issue, I go through the entire output with an eye toward identifying bias or misinformation– all looks to be fine in this case.

Transform: I tweak my prompt by adding that I'd like for my students to have richer explanations accompanying the answers; I go through the EDIT process again for this new output.

You are a thermodynamics expert and veteran teacher, please improve upon the explanations provided with the answers	1
Cancel Send	

Answers:

1. c) Everything outside the system

Explanation: In thermodynamics, the surroundings refer to everything external to the system under study. For example, if you are studying a chemical reaction in a beaker, the surroundings would be the air in the room, the bench the beaker is on, and everything else not in the beaker.

2. a) It is absorbed from the surroundings.

Explanation: In an endothermic reaction, the system absorbs heat from its surroundings, leading to a decrease in the temperature of the surroundings. For instance, when ammonium nitrate dissolves in water, it absorbs heat from the water, making the solution feel cold.

Usefulness: The <u>output is further improved</u> and much more in line with what I was looking for. All looks to be fine in terms of the EDIT criteria as well. These questions are ok to share with my chemistry students!